
June 7, 2001

1 of 29

PTOLEMY GR OUP

DEPARTMENT OF EECS

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 97720

Mobies Position Paper
(DRAFT 2 Version)

Johan Eker
Jörn Janneck
Tak-Kuen John Koo
Edward A. Lee, PI
Jie Liu

Abstract

This document is responding to the MoBIES “Automotive Challenge
Problems”. It is prepared by the Mobies Phase 1 Berkeley team, whose
project is entitled “Process-Based Software Components for Networked
Embedded Systems.” The problems posed in the “Automotive Challenge
Problems” paper are addresses one by one and our views on the problems
are presented.

Motivation

2 of 29 Mobies Position Paper (DRAFT 2 Version)

A. Motivation

As part of the Mobies phase I effort at Berkeley, we are developing a
software framework called Ptolemy II. Ptolemy II is a component-ori-
ented modeling and design framework written in Java. It is intended pri-
marily to facilitate experimentation with design techniques and
methodologies. We believe that a number of the challenge problems
posed by the Mobies phase I team at Berkeley have been already
addressed in the Ptolemy project, and for a number of others, we have
ideas that we expect will lead to a solution.

A.1 The Ptolemy Project

The Ptolemy project studies heterogeneous modeling, simulation, and
design of concurrent systems. The focus is on embedded systems [Lee],
particularly those that mix technologies, including for example analog
and digital electronics, hardware and software, and electronics and
mechanical devices. The focus is also on systems that are complex in the
sense that they mix widely different operations, such as signal process-
ing, feedback control, sequential decision making, and user interfaces.

[Lee] Edward A. Lee, "What's Ahead for Embedded Software?," IEEE
Computer, September 2000, pp. 18-26

A.2 Paper Structure and Notations

This paper is a response to the problems posed in the “Automotive Chal-
lenge Problems” paper. We address the problems one by one in the sec-
tion below. The problems are included for convenience and presented in
italics in the introduction of every section. Sections in italics are written
by the Berkeley Phase I team, and sections in roman are written by the
Phase II team.

Modeling

Mobies Position Paper (DRAFT 2 Version) 3 of 29

B. Modeling

B.1 Multiple-view Modeling

×Problem StatementØ

This problem consists of generating and/or maintaining a consistent set
of models for the same system, but at different levels of abstraction. We
may call these different "views" of the same model.

In [Butts] three levels of abstraction are defined:
- level 1: hybrid automata with continuous dynamics
- level 2: discrete-time controllers and some scheduling information
- level 3: platform (e.g., OS, hardware) specific information (e.g., vari-
able sizes).

Other refinements might include removing the abstraction of "perfect"
inter-module communication which is typical, and replacing it by a more
realistic communication model.

The questions are:
- how to "move" from one level to the next, e.g., perhaps automatically
refine a level-1 model to a level-2 model
- how to preserve consistency when moving automatically, or check con-
sistency of two models developed manually, where consistency means,
e.g., some type-compatibility between inputs and outputs in terms of data
size, sampling rate etc.

×ResponseØ

Solutions to this problem have two different approaches within the
Ptolemy project, and they are hierarchical refinement and multiple-view
models.

B.1.1 Hierarchical Refinement

Ptolemy supports incremental refinement of simulation models through
the use of different models of computation. The complexity of the model
may be increased step by step by extending the model hierarchy. Typi-
cally, for a control system, the initial model specifies only the controller
and the process. The process maybe modeled as ordinary differential

Modeling

4 of 29 Mobies Position Paper (DRAFT 2 Version)

equations (ODEs), and the controller maybe be described using discrete
difference equations.

However, this model does not capture many issues related to an actual
implementation. The usual assumptions is that the execution time is neg-
ligible and that there is no computation or communication jitter. Of
course, this is not the case in the real-world. When the controller is run-
ning on a real computer and on top of a real-time operating system
(RTOS), it will compete with other tasks for resources, e.g. the CPU and
I/O. This will give rise to input-output delays and variations in the sam-
pling period. Furthermore, the actuators and the sensors are usually not
directly connected to the controller, but instead some network is used for
transferring data. The network is a common resource possibly shared by
many other control loops.These loops compete for network bandwidth.
We would like to capture the above properties so that we can predict the
real behavior of the embedded system, and evaluate scheduling mecha-
nisms and communication protocols in terms of applications perfor-
mance.

A more accurate model would include a model of the real-time operating
system and the network. This is done in two steps in Ptolemy II. First, to
consider the real-time issues, we embed the controller designed in the
basic model (i.e. the composite actor that contains the finite state
machine and the subcontrollers) into an RTOS domain model to capture
the effects of the interaction between the different tasks running concur-
rently on the system. The RTOS-domain supports the simulation of con-
current tasks competing for system resources. The composite controller
actor built in the basic model only specifies the computational part of the
controller. To actually reflect the implementation, another task, which
models the I/O part of the controller, is added. This I/O task may compete
for resources with other I/O operations running on the system.

The model can now be extended further by including a model of the net-
work communication. This is done by using a discrete event domain at
the top level, and introducing a network actor, which models the behavior
of a given network protocol. In this process of refining the design, com-
ponents modeled in early phases can be reused.

In this process of refining a design, designers need to gradually add
design considerations to the existing model and migrate the control sys-
tem from algorithms to implementation. Different design perspectives
usually imply heterogeneous component interaction styles. It is desirable
that a design environment can support multiple component interaction

Modeling

Mobies Position Paper (DRAFT 2 Version) 5 of 29

styles and the components designed in earlier phases can be reused under
new interaction styles, so that the verified properties can be preserved as
much as possible. We argue that integrating different models of computa-
tion will help decompose design perspectives and achieve elegant and
reusable models.

B.1.2 Multiple-view Models

In hierarchical refinement, the more detailed model subsumes all aspects
and functionality of the refined one -- the properties of the refined model
logically supervene on the properties of the more detailed one. As men-
tioned above, in case the two models are not formally derived from one
another, the challenge is to prove this supervenience relation, i.e. to
check whether the refinements are, in fact, consistent with the more
abstract description.

An alternative interpretation of the above challenge is that the different
views are not, in fact, refinements of each other, but that they represent
complementing descriptions of a systems, sometimes called facets or
aspects. Composing facets gives rise to the following questions:

• Are they consistent with each other, i.e. is there a system that satisfies
all descriptions in all facets?

• How do facets interact? What are the implications of specifications in
one facet in terms of another?

Complete answers to these questions are in general not computable, but
even partial answers may be very useful, and by constraining the facet
descriptions one may even be able to compute complete answers for
interesting special cases.

There is a substantial body of research on these issues conducted in the
context of Rosetta (www.sldl.org). Rosetta is a specification language
whose central concept is that of a facet. Even though Rosetta includes
facilities for describing structural aspects of a system (composition and
refinement), its main focus is to facilitate multi-view modeling in the
above sense. The language and its semantics framework provide a formal
setting for studying facet composition and interaction, and for answering
the questions above.

From a Ptolemy perspective, Rosetta’s contributions are seen as essen-
tially complementary to Ptolemy’s, the latter being focused primarily on
the structural aspects of systems descriptions. It would thus be most
interesting to integrate these two approaches.

Modeling

6 of 29 Mobies Position Paper (DRAFT 2 Version)

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II supports a hierarchical
refinement of simulation models. At level 1, the plant can be represented
by continuous odes, the controller by a sampled data system. At level 2,
the level 1 controller can be embedded into an RTOS domain model to
simulate the competition for system resources. For the CACC+CW
problem, the model can be further extended to simulate network commu-
nication.

×Phase II understandingØ

Our understanding. This means that to use Ptolemy II facilities the auto-
motive plant and control models have to be rewritten in Ptolemy II.
Moreover, to estimate the performance of the code on OSEK, one must
simulate within Ptolemy the various control tasks and OSEK. These are
very difficult tasks for the OEP group. Will the Ptolemy group undertake
these tasks?

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• A mechanism for hierarchically modeling hybrid controllers where
continuous-time models can be discretized at multiple independent
sample rates. This gets us from “level 1” to “level 2” as posed by the
challenge problem. Schedule: done. This is part of Ptolemy II v. 1.0.

• A mechanism for hierarchically combining multiple modeling tech-
niques, where for example a component representing a model of a
software realization of a controller realized in an RTOS can be embed-
ded in a continuous-time model of the plant and controller working
together. Schedule: done. This is part of Ptolemy II v. 1.0.

• A framework for building code generators from discretized models
that is hierarchical, in that levels of the hierachy can be autonomously
synthesized, and each level is synthesized to respect the abstraction
semantics used at that level of the hierarchy. Schedule: started. This
is a big task. Planned first releasable version by mid 2002.

• Note that we do not believe that modeling arbitrary tasks running
under an RTOS is the right approach. We do not believe that con-
structing applications as arbitrary tasks running under an RTOS is the
right approach. Instead, models are constructed using a principled
model of computation, such as Giotto, or the new RTOS domain we

Modeling

Mobies Position Paper (DRAFT 2 Version) 7 of 29

are working on (see the RTOS generation challenge problem). Thus,
we do not plan to undertake the proposed tasks.

B.2 Automated composition of sub-components

×Problem StatementØ

The problem here is to come up with an efficient method for automati-
cally composing a set of sub-components (e.g. block diagrams in Sim-
ulink) in order to build another component. “

×ResponseØ

Automating component composition can be done in a variety of ways,
which differ primarily in the type of specification that defines the compo-
sition. The three main approaches seem to be the following:

1. The specification is declarative, i.e. the modeler defines a set of con-
straints that define, e.g., compatibility relations between the ports of the
components involved. The composition is automatically derived from
these relations.

2. The modeler uses a set of hard-coded predefined model generators,
that algorithmically create a model structure from some other input to
them. This can be seen as a generalization of the first approach.

3. If the modeling language supports parametric component construction
and/or higher-order components, the modeler may create model tem-
plates that essentially define partial model structures/compositions and
can be parameterized to instantiate complete models.

The main problem with the first approach is that in general there may be
any number of solutions to the constraint set, including zero and more
than one. If there is no solution, it may not be immediately obvious pre-
cisely which constraint or combination of constraints cause the problem,
so failure diagnosis and recovery may become an issue, particularly
when the constraint set is large and highly interrelated. If there is more
than one solution, choosing the right one, or alternatively ensuring that
any is correct, may be far from trivial. One solution is to choose a declar-
ative specification that has exactly one solution. However, it is unlikely
that such a specification would be any more compact or understandable
than a direct specification of the composition of sub-components, and

Modeling

8 of 29 Mobies Position Paper (DRAFT 2 Version)

hence would only amount to an alternative syntax for the same specifica-
tion.

Ptolemy currently supports the second
approach, where users may create compo-
nents that generate and instantiate model
structures depending on some parameters.
For example, there is a model generator
that can be parameterized with a set of
differential equations. This component
analyzes the equations and generates a
corresponding block diagram that expresses the same relation between its
inputs and its outputs as the equations. For example, the above compo-
nent is expanded into the following model structure:

The third approach is an active research problem in the Ptolemy project.
Where applicable, it is preferable to the second approach, because rather
than having some algorithm create a potentially arbitrary model struc-
ture, it represents a more structured approach to automatic model cre-
ation. This in turn facilitates error detection, modular verification, and in
general contributes significantly to the expressive power of the modeling
language.

Modeling

Mobies Position Paper (DRAFT 2 Version) 9 of 29

We intend to leverage existing approaches to higher-order visual model-
ing (cf. for instance the Moses project, www.tik.ee.ethz.ch/~moses), and
adapt them to the requirements of the Ptolemy framework.

We believe that most issues arising from this challenge problem can be
addressed by higher-order modeling components in conjunction with an
expressive type system and a flexible visual syntax. In some special cases
where these might not be adequate, we believe that it is important to have
a general mechanism like the one currently implemented in Ptolemy.

×Phase II summary of this responseØ

Phase I response: Edward Lee. The problem is specified in a declara-
tive mode, i.e. two components may be connected if their input and output
ports meet a generalized type constraint. The problem formulated in this
way is likely to lead to too many solutions or no solution. A better
approach is to have a hard-coded "model generator" that starts from the
target system, and generates a pre-defined structure in terms of compo-
nents. Those components may be parameterized (possibly in terms of the
existing components?), and the designer fills in the appropriate parame-
ters. Ptolemy II provides one example of the second approach: a high-
order differential equation model (the target system) automatically gen-
erates a Simulink-style structure comprising first-order integration
blocks.

×Phase II understandingØ

Our understanding: Lee's "generative" approach is a special case of the
generative grammar sketched in section 6 of the second document by
Milam and Chutinan. One writes a target component T as (say) T = (A +
B)G, where A, B, G are components and `+' and `.' denote particular
types of port connection. If A, B, G are given components, we are done.
Otherwise, we must realize them in terms of other components. Ulti-
mately one obtains a realization of T. The difficulty with this approach,
as Milam and Chutinan note, is that we don't know how to "expand" T so
that we can effectively obtain a realization. The third document by Tri-
pakis is at attempt to automate this expansion.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

Modeling

10 of 29 Mobies Position Paper (DRAFT 2 Version)

• Components that synthesize complex models from algebraic descrip-
tions of functionality. Schedule: done. This is part of Ptolemy II v.
1.0.

• Components that synthesize complex models from particular combi-
nators. Schedule: started. We expect the first releasable version by
mid 2002.

• Tools that help in the construction of graphical models that follow reg-
ular patterns. These are visual renditions of the combinators above.
Schedule: planned. We expect the first releasable version by mid
2003.

Note: We believe that name and/or type matching is most useful way to
specify model structure when there is also a design pattern being applied.
Our focus is on syntemizing the design pattern through the use of combi-
nators.

Further note: We believe that generative approaches in general are about
translating a specification in one language into a refinement in another. It
is certainly possible to invent languages that we do not know how to
translate. So let’s avoid such languages.

B.3 Design and use of good (wireless) communication models

×Problem StatementØ

Inter-module communication is already part of automotive systems, e.g.,
micro-controllers communicating over a CAN bus. With the introduction
of applications requiring more complex networking infrastructure (both
in terms of media, e.g., wireless, and in terms of protocols, e.g., TCP/IP),
communications are an important part of the design. However, they are
usually abstracted at the first level of the control design phase, where it
is assumed that the modules communicate instantaneously and perfectly
(no message loss).
The goal is to develop simple enough communication models, which are
nevertheless relevant for control design. These models can be used either
for analysis or simulation. Simple means not involving, for instance, a
complete simulation of the protocol stack and channel models, as is typi-
cally done by a network simulator.

×ResponseØ

The Ptolemy approach in this case is similar to the one presented in Hier-
archical Refinement on page 3. Actors defined in previous simulations

Modeling

Mobies Position Paper (DRAFT 2 Version) 11 of 29

can be reused to model their behavior in a network setup. A typical
example would be to model a distributed control system. In the first step,
only the controller and the process are modeled as if they were directly
connected to each other. This model is then extended by replacing the
connections between the actors with actors that model the network.

Ptolemy provides an excellent platform for modeling of network commu-
nication for several reasons:

• The Ptolemy II type system supports composite types. In particular, a
record type is a composition of named fields with values that are arbi-
trary types. Type constraints propogate transparently across operations
that operate on these composite types. The record types can be used to
aggregate data into packets that are then launched into abstracted com-
munication subsystem models.

• Ptolemy also allows the user to define the type of the simulated mes-
sages as an ordinary Java class. The structure of the message could be
represented in a high detail model containing headers, tails, CRC, etc.,
while in a a low resolution model only the data part is included.

• Real networks are designed in a hierarchical fashion with different
layers having orthogonal and independent responsibilities. The lower
layers handle the interaction with the physical world, i.e. transmitting
and receiving packet, and manage data integrity, while the higher lev-
els deal with session establishment, data routing and congestion reso-
lution. The different characteristics of the layers make it suitable to
model a network in a simulation framework that explicitly support dif-
ferent models of computation and their interaction. The interaction
with the physical world requires continues time and event while ses-
sion establishment is better expressed using finite state machines. The
different levels could easily be refined and extended through different
phases of the network modeling. While a simple network model only
models random delays a more complex model takes packet collisions,
error coding, bit errors, packet loss, and retransmissions into account.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II is an excellent platform for
modeling network communications.

×Phase II understandingØ

Our understanding: One would have to develop a library of communi-
cations network simulation models, together with models of plant and

Model Analysis

12 of 29 Mobies Position Paper (DRAFT 2 Version)

controller design within Ptolemy. This daunting task cannot be under-
taken by the OEP group. One alternative is to use existing simulation
packages such as ns and Opnet. However, this poses the problem of inte-
grating these packages with, say, Simulink or Teja that describe the plant
and controller. (See challenge problem 4, below). Another approach is
to build an adequate model within Simulink or Teja.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• A framework that can simultaneously model communication networks
(as in Opnet) and contollers and plants (as in Simulink), each using a
modeling strategy suited to the problem being modeled. What we are
delivering is ability to hierarchically compose distinct modeling strate-
gies, not the libraries of modeling components that are needed to con-
struct nontrivial network models. Schedule: done. This is part of
Ptolemy II v. 1.0.

• A framework that supports customization of the modeling semantics
to match the realities of the communication network being used. For
example, if a communication network with unreliable delivery is
being used, then one might wish to construct a model of application by
connecting components with unreliable communication links. Sched-
ule: done. This is part of Ptolemy II v. 1.0.

• Particular modeling semantics that tolerate communication latencies
in communication systems by defining communication to be delayed.
Giotto is one first example of such a modeling semantics. We are
working on at least one other one that does not require the periodic
structure of Giotto. Schedule: started. Expect first versions released
in mid 2002. Elaborations in 2003.

C. Model Analysis

×General ResponseØ

Challenge problems in this section advocate the use of formal models in
designing, implementing, and testing embedded control systems, in par-
ticular, embedded software. Formal models and methods have long been
used in control algorithm designs. For example, the formalism of linear/
nonlinear systems, stability, controllability, observability, and robust-
ness, are all based on solid mathematical foundations. However, tradi-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 13 of 29

tionally, the design and implementation of embedded software is still full
of ad hoc tricks and fragile twists. Theories, methodologies, and tools
that help formalize embedded software models, analyze their properties,
and simulate their real-world behaviors, are under high demand.

Many models exist in embedded software communities. However, some
models are so coarse-grained, like publish and subscribe, that they should
better be used as coordination models among processes and platforms.
Some models are so fine-grained, like the original finite state machines,
that using them to design complex systems becomes tedious and burden-
some. Finding the right (patterns of) models of computation is a critical
part of the Ptolemy project.

C.1 Automatic test generation

×Problem StatementØ

The problem of automatic test generation is, given the model of a system
(in some formalism, e.g., hybrid automata, Simulink blocks), and a speci-
fication of the test goal, to generate a set of test cases that check whether
the system meets the test goal.

The test cases are essentially automata that act as observers/controllers
to the system: they generate inputs to the system, and observe the outputs
of the system, for some finite time. At the end or before this time interval,
they make a verdict, whether the system has passed or failed the test.

Automatic test generation can be viewed as "intelligent" simulation. The
objective is to generate enough test cases (but also a reasonable number
of them) that covers a representative enough class of behaviors, among
all possible environment behaviors.

×ResponseØ

We see testing at two levels -- the atomic level and the composite level.
Almost all component-based design methodologies and tools, including
Simulink, build complex systems using composition of atomic compo-
nents. These atomic components may be provided by tool vendors or
written by application designers. Testing of atomic components requests
a certain amount of knowledge on how the component is written. Some
tools place few constraints on how to write a component, which makes
automated testing very difficult. On the other extreme, some tools restrict
the model of building atomic component to obtain high testability. For

Model Analysis

14 of 29 Mobies Position Paper (DRAFT 2 Version)

example, in Polis [POLIS], components are written in a synchronous lan-
guage, Esterel, and then compiled into codesign finite state machines
(CFSM), which eases the testing and synthesis processes. However,
restricted atomic component models sometimes bring less expressiveness
and awkwardness on writing control algorithms. A study is undergoing
on how to formalize models for Ptolemy II atomic actors. The models
should both be intuitive to application designers, and expose enough for-
mal properties for testing and analysis.

When atomic components are composed to form larger systems, the
interaction styles among them become a critical part of the behavior of
the system. Having formal models for component interaction also helps
testing and analyzing the system. For example, if a piece of embedded
software is built using Boolean Dataflow [BDF], then it may sometimes
be possible to generate a sequence of inputs to test that all components in
the system have been executed.

In terms of software infrastructure support, utility functions can be easily
added to the existing Ptolemy II framework to generate reports on the test
coverage at both atomic component level and component interaction
level. The creation of testbenches, i.e. models that test other models, can
also be easily supported.

[POLIS] F. Balarin, et. al., Hardware-Software Co-Design of Embedded
Systems, the POLIS Approach, Kluwer Academic Publisher, 1997.

[BDF] Joe T. Buck and Edward A. Lee, The Token Flow Model, in
Advanced Topics in Dataflow Computing and Multi-threading, ed.
Lubomir Bic, Guang, Gao, and Jean-Luc Gaudiot, IEEE Computer Soci-
ety Press, 1993

×Phase II summary of this responseØ

Phase I response: Edward Lee. Utility functions can be added to exist-
ing Ptolemy II to generate reports on test coverage at individual compo-
nent and component interaction levels. Creation of testbenches, i.e.
models that test other models, can also be supported.

×Phase II understandingØ

Our understanding: Running simulation models of the design against
typical plant behaviors tests Level 1 and level 2 control designs. In the
PC design, one simulates typical loads, temperature, etc. to evaluate
powertrain performance. In the CCAV+CW design, one simulates "typi-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 15 of 29

cal" scenarios of inter-vehicle distance and speed, etc. The design team
selects the test scenarios.

Testing of code poses more difficult challenges that we haven't resolved.

×Our phase I planØ

We now interpret this challenge problem more broadly to be concerned
with assurance. Debugging and testing methods are part of the solutions
rather than part of the problem. Consider for example a component that
needs new input on all ports in order to react. A proper design ensures
that new input is available on all ports before a reaction is stimulated.
There are three approaches to ensuring that a design is “proper”:

• a testing approach,
• an assertions approach, or
• a static analysis approach.

A testing approach checks everything at run time by testing for particular
violations. An assertions approach statically declares, as part of the
design, the parameters of correct behavior, and verifies at run time that
these parameters are met. A static analysis approach is most familiar
today in the form of a type system. Components declare their parameters
of correctness as part of their interface definition, and a design time tool,
such as a compiler, checks that these parameters are met. Formal verifi-
cation techniques fall in this category as well, but our approach is much
more like type systems than like model checking or theorem proving.

As part of our phase 1 effort we will deliver:

• A mechanism for defining dynamic properties of interfaces (such as
that new inputs are required on all ports to react). Schedule: first ver-
sion done using FSMs and reported in http://ptolemy.eecs.berke-
ley.edu/publications/papers/00/systemLevel/. A second version
interface automata (by Luca de Alfaro) has also been done, but
not yet reported.

• A mechanism for composing interface definitions to perform “type
check” statically. Schedule: started. First version expected by mid
2002. A complete theory and software support is expected by end
2003, perhaps.

Model Analysis

16 of 29 Mobies Position Paper (DRAFT 2 Version)

C.2 Verification

×Problem StatementØ

The problem is to verify that a given model in a formalism such as the
above satisfies a given specification, for example, "an unsafe state is
never reached", "the controller is never deadlocked", a variable used by
the controller has been defined, and so on.

In the CACC+CW application, the main property to be verified is that
collision between vehicles is avoided, that is, the distance between the
subject vehicle and the vehicle in front is never zero.

In the PC application the unsafe or undesirable states might be specified
by bounds on engine speed, fuel-air ratio, stability of idle speed, etc.

×ResponseØ

There are two related issues here -- correct by construction and verifica-
tion. Many system design methodologies advocate correct by construc-
tion, that is, certain properties hold as long as the design staying within a
framework. Pole placement in linear systems is an example of such a
framework that ensures stability. In embedded software design, there are
similar methodologies. For example, in synchronous dataflow models,
deadlock-free is a property that can be statically analyzed. If we have a
correct-by-construction framework, then verification is not an issue.

Certain properties for embedded systems may be hard to provide by cor-
rect-by-construction frameworks. In these cases, we also would like that
the embedded software be built in formal models such that formal verifi-
cation techniques, like reachability analysis and model checking, can be
applied. Tom Henzinger’s group, part of our Mobies effort at UC Berke-
ley, is working to integrate verifiable models, like Giotto, with system
design frameworks, like Ptolemy II.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Tom Henzinger's group is working to
integrate verifiable models, like Giotto, with Ptolemy II.

×Phase II understandingØ

Our understanding: Existing tools for verification of hybrid systems
place strong restrictions on the system dynamics, which preclude their

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 17 of 29

use for the automotive OEP. So one must resort to approximations. The
use of FSM model-checking tools requires even further approximations.
It would be valuable to see how the CMU and U. Penn tools work on the
(non-hybrid) example in Puri and Varaiya.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Generators that produce code that is “correct by construction” in that it
matches the (narrow) semantics of a well-understood model that does
not therefore require elaborate verification. Giotto and synchronous
dataflow, for example, are modeling frameworks with sufficiently nar-
row semantics that strong properties can be asserted about any correct-
by-construction implementation. Schedule: started. First versions of
code generators from Giotto and SDF are expected by mid 2002.
Inclusion of FSM and RTOS is expected in 2003. Note that this is
the same code generator promised above in B.1.2, Multiple-View
Models.

Note: One view of the restriction on system dynamics is that it “precludes
use for the automotive OEP” and one must resort to approximation.
Another view is that requires abstraction. We prefer the second view.

C.3 Synthesis of switching (hybrid) controllers

×Problem StatementØ

The problem here is, given a set of macro-states (system modes), for each
of which a control law is defined, and a set of switching conditions
between these states, to synthesize a global controller which operates in
any of these states and switches between them according to the condi-
tions. The objectives are that the controller is stable, transitions are
"smooth", and so on.

The synthesis might involve restricting the conditions, adding resets (re-
initialize some variables), or synthesizing a transient set of states
through which the controller passes during the switch.

×ResponseØ

This work has been performed in the SEC project at Berkeley.

Model Analysis

18 of 29 Mobies Position Paper (DRAFT 2 Version)

In many control applications, a specific set of controllers of satisfactory
performance have already been designed and must be used. When such a
collection of control modes is available, an important problem is to be
able to accomplish a variety of high level tasks by appropriately switch-
ing between the low-level control modes. In [KPS], a framework for
determining the sequence of control modes satisfying reachability tasks
is proposed. The approach consists of extracting a finite graph which
refines the original collections of control modes, but is consistent with
the physical system, in the sense that high level design has feasible
implementation. Therefore, the control mode graph can then be used on-
line for efficient and dependable real-time mode switching. For deter-
mining the switching conditions between different modes, there exists
synthesis algorithm [ABDMP] for linear controlled systems. As shown in
[KPS], if the closed loop dynamics are considered, the switching condi-
tions between control modes can be computed efficiently by just examin-
ing the stability properties in the control modes. The framework
presented in [KPS] is illustrated on a nonlinear helicopter control system
with four control modes.

[KPS] T. J. Koo, G. J. Pappas, and S. Sastry, “Mode Switching Synthesis
for Reachability Specifications,” Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science, Springer, 2001.

[ABDMP] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli,
“Effective Synthesis of Switching Controllers for Linear Systems,” In
Proceedings of the IEEE, 88, Special Issue on Hybrid System: Theory &
Applications, 1011-1025, 2000.

C.4 Performance

×Problem StatementØ

The problem is to study robustness to parameter changes (sensitivity),
fault tolerance, etc. Controller designs typically incorporate strategies
for detection and reaction to faults.

×ResponseØ

We acknowledge the studies on networked control systems, real-time
performance of embedded controllers, and fault detection and isolation
(FDI). We are not expecting to contribute on the theoretical aspects of
these studies. However, we believe that modeling and simulation envi-
ronments that allows people who work on such theories to quickly proto-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 19 of 29

type their concepts is equally important. As stated in section B.1,
Ptolemy II is able to integrate models for real-time scheduling, network
protocols, controllers, FDI algorithms, and plant dynamics, and allow
designers to gradually increment design considerations.

×Phase II summary of this responseØ

Phase I response: Edward Lee. The Ptolemy II simulation environment
can be used to quickly prototype concepts of fault detection and isolation,
and to integrate those models with those of the rest of the plant and con-
trollers.

×Phase II understandingØ

Our understanding: There are two steps in how control designs address
fault tolerance. The first step involves fault detection. One assumes a set
of models that describe the system under various fault conditions. The
set includes the no-fault model. A separate controller is built for each
fault condition. Based on sensor measurements, an on-line statistical
procedure infers when a fault occurs and what type it is, and a "supervi-
sor" switches in the controller built to handle that fault. There is a vari-
ety of inference procedures and redundant architectures to make robust
the inference and fault-handling controllers.

×Our phase I planØ

As part of our phase 1 effort we will deliver one or more techniques for
constructing modal models. We will not specifically address the FDI
problem, but we believe that this modal modeling infrastructure can be
used to explore the problem.

• A finite-state machine domain that can be composed hierarchically
with other domains to achieve modal models. Schedule: done. This is
part of Ptolemy II v. 1.0.

• An improved visual syntax for constructing modal models hierarchi-
cally. Schedule: started. First version expected in mid 2002.

• A generalized masking scheme where models that are assemblies of
components have associated with them a state machine, where each
state of the state machine “masks” the components that are active.
Schedule: We have constructed a first prototype as part of the
SEC project, and may be pursuing this under that project.

Implementation

20 of 29 Mobies Position Paper (DRAFT 2 Version)

D. Implementation

D.1 Test vector generation

×Problem StatementØ

They can be simulated and analyzed using a given tool: one challenge
here is to compare the semantics and expressiveness of the different for-
malisms, and indicate which is more suitable for which typical control
applications.

×Not responded yetØ

D.2 Schedulability analysis

×Problem StatementØ

Most systems consist of a number of logical tasks, where each task is
characterized by a set of activation conditions, execution time, resources
that it has to access, and completion deadline. Upon implementation,
these logical tasks are mapped onto one or more processes running on a
single host machine, therefore sharing the CPU and other resources. The
problem of schedulability analysis consists in determining which policy
to use for scheduling the physical tasks so that the deadlines of the logi-
cal tasks are met (plus other properties such as absence of deadlocks,
process starvation, and so on). Alternatively, given a scheduling policy,
to determine whether these conditions are met. Notice that we distinguish
between logical and physical tasks (processes), since in general, more
than one logical tasks can be implemented in the same process, where
they are scheduled internally (e.g., Teja generates code like that). Even
in this case, it is the requirements of the logical tasks that have to be met.

A particular challenge problem is to carry out in an automated way a
schedulability analysis similar to the one described in the document
below, for the publish/subscribe database architecture used at PATH.
Part of the challenge problem is to come up with automated ways to esti-
mate the various execution times necessary in the analysis. Even better
would be a synthesis procedure that proposes how priorities are to be
assigned to the different processes.

×ResponseØ

Implementation

Mobies Position Paper (DRAFT 2 Version) 21 of 29

Processes, and their cousin, threads, are widely used for concurrent soft-
ware design. Indeed, processes can be viewed as a component technol-
ogy, where a multitasking operating system or multithreaded execution
engine provides the framework that coordinates the components. Compo-
nent interaction mechanisms, monitors, semaphores, and remote proce-
dure calls, are supported by the framework. In this context, a process can
be viewed as a component that exposes at its interface an ordered
sequence of external interactions. However, as a component technology,
processes and threads are extremely weak. A composition of two pro-
cesses is not a process (it no longer exposes at its interface an ordered
sequence of external interactions). Worse, a composition of two pro-
cesses is not a component of any sort that we can easily characterize. It is
for this reason that concurrent programs built from processes or threads
are so hard to get right. It is very difficult to talk about the properties of
the aggregate because we have no ontology for the aggregate.

A key problem in scheduling is that most methods are not compositional.
That is, even if assurances can be provided individually to a pair of com-
ponents, there are no systematic mechanisms for providing assurances to
two, except in trivial cases. A chronic problem with priority-based sched-
uling, known as priority inversion, is one manifestation of this problem.

×Phase II summary of this responseØ

Phase I response: Edward Lee. A key problem in scheduling is that most
methods are not compositional. Processes (and threads) consume
shared resources in a complicated manner. So if process A and B can be
accommodated separately, there is no easy way to ensure that A and B
together can be accommodated. A TDM scheduler like Giotto and TTA
simplifies schedulability since it divides CPU resources into time slots
and assigns a time slot to each periodic task.

×Phase II understandingØ

Our understanding: Traditional schedulability analysis like RMA is lim-
ited. Some limitations are overcome by extensions, eg., Harbour, Lehoc-
zky, and Klein: "Analysis of tasks with varying fixed priorities," Prof.
12th IEEE Real-time Systems Symposioum, 1991. The above-cited docu-
ment by Tripakis does this. Yet another approach based on Esterel and
Kronos is presented in the document by Tripakis and Yovine. Going to a
TDM system certainly simplifies schedulability analysis. However, there
may be a large cost: the underlying hardware and OS must support
TDM; the fixed TDM schedule reduces flexibility; TDM schedules may

Implementation

22 of 29 Mobies Position Paper (DRAFT 2 Version)

not work for event-driven systems as in the PC problem where camshaft-
driven events are very important.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Modeling semantics such as Giotto where schedulability analysis is
greatly simplified by disciplining the inter-component interactions
(data dependencies and synchronization). This will include modeling
semantics that are applicable to other sorts of problems than Giotto,
such as event-based problems. Schedule: This is pretty open ended
work, hard to pin down to a schedule. Under the SEC project, we
have developed an RTOS domain in Ptolemy II that has semantics
somewhere between Giotto and a conventional RTOS. We are
studying this to see how to adapt it to the automotive OEP sce-
nario.

D.3 Code Generation

×Problem StatementØ

The problem here is to automatically generate code for a given platform,
starting from a model (e.g., hybrid automata, dataflow blocks), such that
the generated code preserves the properties of the model, potentially
under a number of assumptions on the underlying platform.

Code generation can occur at various granularities: generating code for
pieces of the entire model (e.g., Simulink blocks) up to generating code
for the entire model (e.g., Teja). In the first case, support is necessary for
"gluing" the pieces together (e.g., scheduling). In the latter case, sup-
ports necessary for performing schedulability analysis (c.f. problem 3.2).
In case this analysis shows that some deadlines are missed, it is likely
that this is due to the granularity of some atomic actions, which is too
coarse (i.e., preemption of these actions is necessary). The tool should be
able to figure this out and guide the user into splitting the actions in
question into more fine-grain pieces.

×ResponseØ

The feasibility and quality of code generation heavily depends on the
models that are used to create high-level designs. For example, to gener-
ate code that implements a discrete-event model of computation, an event
queue and sorting algorithms have to be generated; to generate code that

Implementation

Mobies Position Paper (DRAFT 2 Version) 23 of 29

implements a discrete-time models, a time-triggered execution engine
need to be generated; to generate prioritized preemptive models, priori-
tized process queues and preemption mechanism need to be generated,
and so on. Mixing and matching right models of computation not only
make complex designs more understandable, but also helps optimize
generated code.

In Ptolemy II, code can be generated at two levels -- shallow and deep.
Code generated by shallow code generation will rely on Ptolemy II pack-
ages to execute. The generated code still use Ptolemy actor libraries,
actor composition, and directors. Although the implementation language
is still Java, the code generation process can create an independent Java
application and package only necessary Ptolemy II classes with it.

Deep code generation looks into individual actors, and creates abstract
syntax trees (AST) for them. Together with knowledge provided by the
type system and models of computation, it can generate (in principle)
highly efficient codes that targets specific designs. Since the AST is
implementation independent, the backend language can easily be C/C++.
This work is still highly preliminary, but we are optimistic that it will
yield a far better approach to code generation than any of the commonly
used alternatives.

We are also looking at platform dependent run-time support for Ptolemy
designs. See further discussion in section D.5.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II can generate code at shallow
and deep levels. Shallow code in Java uses Ptolemy libraries to execute
a simulation. Deep code that targets specific designs (platforms like
OSEK+MPC55?) can in principle be generated.

×Phase II understandingØ

Our understanding: Executable simulation (shallow) code seems like
the code generated by, say, Simulink or Shift. Teja generates code for the
publish and subscribe architecture and a forthcoming Teja compiler for
OSEK will generate code for the MPC555 platform.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

Implementation

24 of 29 Mobies Position Paper (DRAFT 2 Version)

• A framework for building code generators from several models of
computation, and example code generators at least for Giotto, SDF,
and FSM. Schedule: first versions in mid 2002. More complete ver-
sions in 2003.

D.4 Code debugging and testing

×Problem StatementØ

Code debugging and testing refers to: first, being able to run and debug
the code with or without hardware in the loop; second, being able to map
the results to the model from which the code has been generated (if this is
the case). For example, if an error occurs during the execution of the
code, say a variable X grows above an acceptable limit, one should be
able to check whether the same behavior can be reproduced in the model.
If this is so, then the model is incorrect. Otherwise, either some of the
assumptions of the underlying platform has been violated (e.g., not
enough CPU), or the code generator is incorrect.

A useful method for code debugging and is the annotation of the code
with "self-examining" parts, for example, assertions about the timing,
values of variables, and so on. This is often done manually, and a chal-
lenge is to generate such annotations automatically and provide support
for the interpretation of the results.

×Not responded yet.Ø

D.5 RTOS generation

×Problem StatementØ

Ford's definition of the challenge problem is as follows: given a target
software and hardware architecture, the worst-case execution time for
the embedded system code, and additional timing constraints, generate a
custom RTOS that enables the target code to meet all the timing require-
ments and is the most efficient in ROM, RAM, and CPU usage.

We think that automatic generation of OSEK OIL files for Matlab/Sim-
ulink generated code can also be considered under this topic, as the lat-
est version of Matlab can not generate OIL files for OSEK applications.
OSEK Implementation Language (OIL) aims to create an OSEK compli-

Implementation

Mobies Position Paper (DRAFT 2 Version) 25 of 29

ant RTOS scaled to a specific application. For all OSEK applications
OIL must be used to statically configure the application at compile time.
OIL is used to select the scheduling policy, define the objects (like tasks,
alarms, events, resources, counters, ISRs...etc) in an application and
their attributes.

×ResponseØ

We share the vision with Ford that embedded systems sometimes need
application specific run-time environment, e.g. RTOS, to achieve high
execution efficiency and low foot-print. We have studied run-time mod-
els for control-centric embedded systems and proposed a hierarchical
composition of run-time models based on Ptolemy component architec-
ture and models of computation [LJL]. Existing RTOSs usually only pro-
vide a flat layer of abstraction and one model of computation --
prioritized preemptive scheduling. All applications have to map to such a
run-time model, regardless whether the model matches the application.
One purpose of our hierarchical run-time models is to allow designers to
use execution models that fit the application best and to deploy only the
necessary run-time support packages.

In particular, we propose to solve the problem from two ends. From the
design side, embedded system designers should be able to explore differ-
ent models of computations to match the application. This will typically
ends up with hierarchically composing heterogeneous models of compu-
tation. And from the implementation side, a run-time environment can be
developed that support hierarchical composition of run-time models.
Such a run-time environment will be platform dependent and highly
(re)configurable. The run-time environment will also reduce the code
generation complexity, since the implementation architectures match the
modeling and design architectures.

[LJL] Jie Liu, Stan Jefferson, and Edward A. Lee, “Motivating Hierarchi-
cal Run-Time Models for Measurement and Control Systems,” to appear
in 2001 American Control Conference (ACC’01), Arlington, VA, June
2001.

Implementation

26 of 29 Mobies Position Paper (DRAFT 2 Version)

×Phase II summary of this responseØ

Phase I response: Edward Lee. Addressing this problem within the
Ptolemy framework is on the agenda.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Code generation for Giotto and possibly our RTOS domain. Sched-
ule: In 2003.

D.6 System Partition

×Problem StatementØ

Implementation is relative to a given platform, which includes hardware
components such as computers/micro-controllers, sensors, actuators,
communication devices and links, and software such as operating sys-
tems, device drivers, libraries, or middleware (e.g., Corba, Jini, Publish/
Subscribe). Often the choice of the underlying platform has been fixed by
other factors, but it may be the case that a number or alternatives are
possible.

One challenge problem is therefore to provide methods for choosing a
platform, given a description of the particular application or class of
applications that the platform has to support. The description might be
the detailed model of the application, or some general characteristics
such as sampling frequencies, desired throughput, and so on.

Assuming the platform and application are fixed, and the platform is dis-
tributed, a challenge is to support the user in deciding how to partition
the different functions or tasks of the application to the different comput-
ers, micro-controllers, etc. Such feedback may be input to the code-gen-
eration tools, which will generate code for the different parts, as well as
for interfacing these parts (e.g., through a network).

Integration

Mobies Position Paper (DRAFT 2 Version) 27 of 29

×Not responded yet.Ø

E. Integration

This is one challenge problem that has multiple aspects. It has to do with
merging of different control applications (e.g the PC and CACC+CW
applications):

- at the modeling, simulation and analysis level,
- at the implementation level.

The controllers for PC and CACC+CW are complementary in the sense
that CACC+CW produces a desired acceleration/deceleration output,
while PC receives acceleration as input and produces torque as output.

During the first stages of the project, models and implementations of
these two applications will be developed using different formalisms and
tools, and on different platforms.

The integration challenge is to develop methods and tools in order to be
able to perform one or more of the following functions:

E.1 Model translation

×Problem StatementØ

They can be simulated and analyzed using a given tool: one challenge
here is to compare the semantics and expressiveness of the different for-
malisms, and indicate which is more suitable for which typical control
applications.

E.2 Integration of models and computation

This includes studying different underlying models of computation of
each tool, and resolving whether the underlying assumptions are com-
patible, and what fixes are needed for meaningful model comparison/
integration.

×ResponseØ

Integration

28 of 29 Mobies Position Paper (DRAFT 2 Version)

We do not quite understand what exactly the problem statement is. The
Ptolemy project is all about integration of models of computation.

E.3 Tool Integration

×Problem StatementØ

Integrate tools (e.g., Simulink and Teja) so that they can simulate in con-
junction two sets of interacting models. The challenge here is to preserve
real-time properties during the execution of the two tools in parallel.

×ResponseØ

One fundamental issue about (interactive) tool integration is the seman-
tics integration. Tools are designed based on one or more models of com-
putation. For tool integration, we have to understand the MoC and study
the interaction among them. In most cases, this may require the tools to
expose more information than it usually does.

For example, if we want to do mixed-signal simulation by integrating
discrete-event simulators with continuous-time simulators, then we
require that the discrete event simulator to expose its “next event time” in
addition to its current time. Obviously, not all discrete event simulators
support that. In an early study [LWLL], we claimed that tools are likely
to be able to communicate with other tools with the same semantics.
Based on the fact that Ptolemy II support multiple MoC, we can use
Ptolemy II as a glue to integrate tools.

It is also helpful to look at tool integration from dataflow and control
flow perspectives. At an abstract level, execution in a design tool can be
view as data flow objects. They read inputs, do a finite computation, and
produce outputs. Individual tools also apply specific control flows to its
internal execution. They typically control how the messages are deliv-
ered from one component to another, what is the execution order among
components, and what is an atomic piece of execution. The concepts of
composite actor and hierarchy in Ptolemy II provide a polymorphic way
of encapsulating control flow. Composite actors wrap their internal com-
ponents execution in such a way that they behaves like atomic actors.
Similarly, if we can wrap tools in such a way that they behave like
(domain-polymorphic) dataflow components, then the integration of
tools could be lot easier. Of course, this is not always the case. Some-
times, control flow information must be exposed to the outside.

Integration

Mobies Position Paper (DRAFT 2 Version) 29 of 29

[LWLL] Jie Liu, Bicheng Wu, Xiaojun Liu, and Edward A. Lee, “Inter-
operation of Heterogeneous CAD Tools in Ptolemy II,” in symposium on
Design, Test, and Microfabrication of MEMS/MOEMs, March 1999,
Paris, France

E.4 Software/hardware integration

×Problem StatementØ

One challenge here is to build interfaces through which the two imple-
mentations will communicate, or alternatively, re-generate the imple-
mentations, given that they will run in parallel.

×Not responded yet.Ø

June 7, 2001

1 of 29

PTOLEMY GR OUP

DEPARTMENT OF EECS

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 97720

Mobies Position Paper
(DRAFT 2 Version)

Johan Eker
Jörn Janneck
Tak-Kuen John Koo
Edward A. Lee, PI
Jie Liu

Abstract

This document is responding to the MoBIES “Automotive Challenge
Problems”. It is prepared by the Mobies Phase 1 Berkeley team, whose
project is entitled “Process-Based Software Components for Networked
Embedded Systems.” The problems posed in the “Automotive Challenge
Problems” paper are addresses one by one and our views on the problems
are presented.

Motivation

2 of 29 Mobies Position Paper (DRAFT 2 Version)

A. Motivation

As part of the Mobies phase I effort at Berkeley, we are developing a
software framework called Ptolemy II. Ptolemy II is a component-ori-
ented modeling and design framework written in Java. It is intended pri-
marily to facilitate experimentation with design techniques and
methodologies. We believe that a number of the challenge problems
posed by the Mobies phase I team at Berkeley have been already
addressed in the Ptolemy project, and for a number of others, we have
ideas that we expect will lead to a solution.

A.1 The Ptolemy Project

The Ptolemy project studies heterogeneous modeling, simulation, and
design of concurrent systems. The focus is on embedded systems [Lee],
particularly those that mix technologies, including for example analog
and digital electronics, hardware and software, and electronics and
mechanical devices. The focus is also on systems that are complex in the
sense that they mix widely different operations, such as signal process-
ing, feedback control, sequential decision making, and user interfaces.

[Lee] Edward A. Lee, "What's Ahead for Embedded Software?," IEEE
Computer, September 2000, pp. 18-26

A.2 Paper Structure and Notations

This paper is a response to the problems posed in the “Automotive Chal-
lenge Problems” paper. We address the problems one by one in the sec-
tion below. The problems are included for convenience and presented in
italics in the introduction of every section. Sections in italics are written
by the Berkeley Phase I team, and sections in roman are written by the
Phase II team.

Modeling

Mobies Position Paper (DRAFT 2 Version) 3 of 29

B. Modeling

B.1 Multiple-view Modeling

×Problem StatementØ

This problem consists of generating and/or maintaining a consistent set
of models for the same system, but at different levels of abstraction. We
may call these different "views" of the same model.

In [Butts] three levels of abstraction are defined:
- level 1: hybrid automata with continuous dynamics
- level 2: discrete-time controllers and some scheduling information
- level 3: platform (e.g., OS, hardware) specific information (e.g., vari-
able sizes).

Other refinements might include removing the abstraction of "perfect"
inter-module communication which is typical, and replacing it by a more
realistic communication model.

The questions are:
- how to "move" from one level to the next, e.g., perhaps automatically
refine a level-1 model to a level-2 model
- how to preserve consistency when moving automatically, or check con-
sistency of two models developed manually, where consistency means,
e.g., some type-compatibility between inputs and outputs in terms of data
size, sampling rate etc.

×ResponseØ

Solutions to this problem have two different approaches within the
Ptolemy project, and they are hierarchical refinement and multiple-view
models.

B.1.1 Hierarchical Refinement

Ptolemy supports incremental refinement of simulation models through
the use of different models of computation. The complexity of the model
may be increased step by step by extending the model hierarchy. Typi-
cally, for a control system, the initial model specifies only the controller
and the process. The process maybe modeled as ordinary differential

Modeling

4 of 29 Mobies Position Paper (DRAFT 2 Version)

equations (ODEs), and the controller maybe be described using discrete
difference equations.

However, this model does not capture many issues related to an actual
implementation. The usual assumptions is that the execution time is neg-
ligible and that there is no computation or communication jitter. Of
course, this is not the case in the real-world. When the controller is run-
ning on a real computer and on top of a real-time operating system
(RTOS), it will compete with other tasks for resources, e.g. the CPU and
I/O. This will give rise to input-output delays and variations in the sam-
pling period. Furthermore, the actuators and the sensors are usually not
directly connected to the controller, but instead some network is used for
transferring data. The network is a common resource possibly shared by
many other control loops.These loops compete for network bandwidth.
We would like to capture the above properties so that we can predict the
real behavior of the embedded system, and evaluate scheduling mecha-
nisms and communication protocols in terms of applications perfor-
mance.

A more accurate model would include a model of the real-time operating
system and the network. This is done in two steps in Ptolemy II. First, to
consider the real-time issues, we embed the controller designed in the
basic model (i.e. the composite actor that contains the finite state
machine and the subcontrollers) into an RTOS domain model to capture
the effects of the interaction between the different tasks running concur-
rently on the system. The RTOS-domain supports the simulation of con-
current tasks competing for system resources. The composite controller
actor built in the basic model only specifies the computational part of the
controller. To actually reflect the implementation, another task, which
models the I/O part of the controller, is added. This I/O task may compete
for resources with other I/O operations running on the system.

The model can now be extended further by including a model of the net-
work communication. This is done by using a discrete event domain at
the top level, and introducing a network actor, which models the behavior
of a given network protocol. In this process of refining the design, com-
ponents modeled in early phases can be reused.

In this process of refining a design, designers need to gradually add
design considerations to the existing model and migrate the control sys-
tem from algorithms to implementation. Different design perspectives
usually imply heterogeneous component interaction styles. It is desirable
that a design environment can support multiple component interaction

Modeling

Mobies Position Paper (DRAFT 2 Version) 5 of 29

styles and the components designed in earlier phases can be reused under
new interaction styles, so that the verified properties can be preserved as
much as possible. We argue that integrating different models of computa-
tion will help decompose design perspectives and achieve elegant and
reusable models.

B.1.2 Multiple-view Models

In hierarchical refinement, the more detailed model subsumes all aspects
and functionality of the refined one -- the properties of the refined model
logically supervene on the properties of the more detailed one. As men-
tioned above, in case the two models are not formally derived from one
another, the challenge is to prove this supervenience relation, i.e. to
check whether the refinements are, in fact, consistent with the more
abstract description.

An alternative interpretation of the above challenge is that the different
views are not, in fact, refinements of each other, but that they represent
complementing descriptions of a systems, sometimes called facets or
aspects. Composing facets gives rise to the following questions:

• Are they consistent with each other, i.e. is there a system that satisfies
all descriptions in all facets?

• How do facets interact? What are the implications of specifications in
one facet in terms of another?

Complete answers to these questions are in general not computable, but
even partial answers may be very useful, and by constraining the facet
descriptions one may even be able to compute complete answers for
interesting special cases.

There is a substantial body of research on these issues conducted in the
context of Rosetta (www.sldl.org). Rosetta is a specification language
whose central concept is that of a facet. Even though Rosetta includes
facilities for describing structural aspects of a system (composition and
refinement), its main focus is to facilitate multi-view modeling in the
above sense. The language and its semantics framework provide a formal
setting for studying facet composition and interaction, and for answering
the questions above.

From a Ptolemy perspective, Rosetta’s contributions are seen as essen-
tially complementary to Ptolemy’s, the latter being focused primarily on
the structural aspects of systems descriptions. It would thus be most
interesting to integrate these two approaches.

Modeling

6 of 29 Mobies Position Paper (DRAFT 2 Version)

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II supports a hierarchical
refinement of simulation models. At level 1, the plant can be represented
by continuous odes, the controller by a sampled data system. At level 2,
the level 1 controller can be embedded into an RTOS domain model to
simulate the competition for system resources. For the CACC+CW
problem, the model can be further extended to simulate network commu-
nication.

×Phase II understandingØ

Our understanding. This means that to use Ptolemy II facilities the auto-
motive plant and control models have to be rewritten in Ptolemy II.
Moreover, to estimate the performance of the code on OSEK, one must
simulate within Ptolemy the various control tasks and OSEK. These are
very difficult tasks for the OEP group. Will the Ptolemy group undertake
these tasks?

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• A mechanism for hierarchically modeling hybrid controllers where
continuous-time models can be discretized at multiple independent
sample rates. This gets us from “level 1” to “level 2” as posed by the
challenge problem. Schedule: done. This is part of Ptolemy II v. 1.0.

• A mechanism for hierarchically combining multiple modeling tech-
niques, where for example a component representing a model of a
software realization of a controller realized in an RTOS can be embed-
ded in a continuous-time model of the plant and controller working
together. Schedule: done. This is part of Ptolemy II v. 1.0.

• A framework for building code generators from discretized models
that is hierarchical, in that levels of the hierachy can be autonomously
synthesized, and each level is synthesized to respect the abstraction
semantics used at that level of the hierarchy. Schedule: started. This
is a big task. Planned first releasable version by mid 2002.

• Note that we do not believe that modeling arbitrary tasks running
under an RTOS is the right approach. We do not believe that con-
structing applications as arbitrary tasks running under an RTOS is the
right approach. Instead, models are constructed using a principled
model of computation, such as Giotto, or the new RTOS domain we

Modeling

Mobies Position Paper (DRAFT 2 Version) 7 of 29

are working on (see the RTOS generation challenge problem). Thus,
we do not plan to undertake the proposed tasks.

B.2 Automated composition of sub-components

×Problem StatementØ

The problem here is to come up with an efficient method for automati-
cally composing a set of sub-components (e.g. block diagrams in Sim-
ulink) in order to build another component. “

×ResponseØ

Automating component composition can be done in a variety of ways,
which differ primarily in the type of specification that defines the compo-
sition. The three main approaches seem to be the following:

1. The specification is declarative, i.e. the modeler defines a set of con-
straints that define, e.g., compatibility relations between the ports of the
components involved. The composition is automatically derived from
these relations.

2. The modeler uses a set of hard-coded predefined model generators,
that algorithmically create a model structure from some other input to
them. This can be seen as a generalization of the first approach.

3. If the modeling language supports parametric component construction
and/or higher-order components, the modeler may create model tem-
plates that essentially define partial model structures/compositions and
can be parameterized to instantiate complete models.

The main problem with the first approach is that in general there may be
any number of solutions to the constraint set, including zero and more
than one. If there is no solution, it may not be immediately obvious pre-
cisely which constraint or combination of constraints cause the problem,
so failure diagnosis and recovery may become an issue, particularly
when the constraint set is large and highly interrelated. If there is more
than one solution, choosing the right one, or alternatively ensuring that
any is correct, may be far from trivial. One solution is to choose a declar-
ative specification that has exactly one solution. However, it is unlikely
that such a specification would be any more compact or understandable
than a direct specification of the composition of sub-components, and

Modeling

8 of 29 Mobies Position Paper (DRAFT 2 Version)

hence would only amount to an alternative syntax for the same specifica-
tion.

Ptolemy currently supports the second
approach, where users may create compo-
nents that generate and instantiate model
structures depending on some parameters.
For example, there is a model generator
that can be parameterized with a set of
differential equations. This component
analyzes the equations and generates a
corresponding block diagram that expresses the same relation between its
inputs and its outputs as the equations. For example, the above compo-
nent is expanded into the following model structure:

The third approach is an active research problem in the Ptolemy project.
Where applicable, it is preferable to the second approach, because rather
than having some algorithm create a potentially arbitrary model struc-
ture, it represents a more structured approach to automatic model cre-
ation. This in turn facilitates error detection, modular verification, and in
general contributes significantly to the expressive power of the modeling
language.

Modeling

Mobies Position Paper (DRAFT 2 Version) 9 of 29

We intend to leverage existing approaches to higher-order visual model-
ing (cf. for instance the Moses project, www.tik.ee.ethz.ch/~moses), and
adapt them to the requirements of the Ptolemy framework.

We believe that most issues arising from this challenge problem can be
addressed by higher-order modeling components in conjunction with an
expressive type system and a flexible visual syntax. In some special cases
where these might not be adequate, we believe that it is important to have
a general mechanism like the one currently implemented in Ptolemy.

×Phase II summary of this responseØ

Phase I response: Edward Lee. The problem is specified in a declara-
tive mode, i.e. two components may be connected if their input and output
ports meet a generalized type constraint. The problem formulated in this
way is likely to lead to too many solutions or no solution. A better
approach is to have a hard-coded "model generator" that starts from the
target system, and generates a pre-defined structure in terms of compo-
nents. Those components may be parameterized (possibly in terms of the
existing components?), and the designer fills in the appropriate parame-
ters. Ptolemy II provides one example of the second approach: a high-
order differential equation model (the target system) automatically gen-
erates a Simulink-style structure comprising first-order integration
blocks.

×Phase II understandingØ

Our understanding: Lee's "generative" approach is a special case of the
generative grammar sketched in section 6 of the second document by
Milam and Chutinan. One writes a target component T as (say) T = (A +
B)G, where A, B, G are components and `+' and `.' denote particular
types of port connection. If A, B, G are given components, we are done.
Otherwise, we must realize them in terms of other components. Ulti-
mately one obtains a realization of T. The difficulty with this approach,
as Milam and Chutinan note, is that we don't know how to "expand" T so
that we can effectively obtain a realization. The third document by Tri-
pakis is at attempt to automate this expansion.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

Modeling

10 of 29 Mobies Position Paper (DRAFT 2 Version)

• Components that synthesize complex models from algebraic descrip-
tions of functionality. Schedule: done. This is part of Ptolemy II v.
1.0.

• Components that synthesize complex models from particular combi-
nators. Schedule: started. We expect the first releasable version by
mid 2002.

• Tools that help in the construction of graphical models that follow reg-
ular patterns. These are visual renditions of the combinators above.
Schedule: planned. We expect the first releasable version by mid
2003.

Note: We believe that name and/or type matching is most useful way to
specify model structure when there is also a design pattern being applied.
Our focus is on syntemizing the design pattern through the use of combi-
nators.

Further note: We believe that generative approaches in general are about
translating a specification in one language into a refinement in another. It
is certainly possible to invent languages that we do not know how to
translate. So let’s avoid such languages.

B.3 Design and use of good (wireless) communication models

×Problem StatementØ

Inter-module communication is already part of automotive systems, e.g.,
micro-controllers communicating over a CAN bus. With the introduction
of applications requiring more complex networking infrastructure (both
in terms of media, e.g., wireless, and in terms of protocols, e.g., TCP/IP),
communications are an important part of the design. However, they are
usually abstracted at the first level of the control design phase, where it
is assumed that the modules communicate instantaneously and perfectly
(no message loss).
The goal is to develop simple enough communication models, which are
nevertheless relevant for control design. These models can be used either
for analysis or simulation. Simple means not involving, for instance, a
complete simulation of the protocol stack and channel models, as is typi-
cally done by a network simulator.

×ResponseØ

The Ptolemy approach in this case is similar to the one presented in Hier-
archical Refinement on page 3. Actors defined in previous simulations

Modeling

Mobies Position Paper (DRAFT 2 Version) 11 of 29

can be reused to model their behavior in a network setup. A typical
example would be to model a distributed control system. In the first step,
only the controller and the process are modeled as if they were directly
connected to each other. This model is then extended by replacing the
connections between the actors with actors that model the network.

Ptolemy provides an excellent platform for modeling of network commu-
nication for several reasons:

• The Ptolemy II type system supports composite types. In particular, a
record type is a composition of named fields with values that are arbi-
trary types. Type constraints propogate transparently across operations
that operate on these composite types. The record types can be used to
aggregate data into packets that are then launched into abstracted com-
munication subsystem models.

• Ptolemy also allows the user to define the type of the simulated mes-
sages as an ordinary Java class. The structure of the message could be
represented in a high detail model containing headers, tails, CRC, etc.,
while in a a low resolution model only the data part is included.

• Real networks are designed in a hierarchical fashion with different
layers having orthogonal and independent responsibilities. The lower
layers handle the interaction with the physical world, i.e. transmitting
and receiving packet, and manage data integrity, while the higher lev-
els deal with session establishment, data routing and congestion reso-
lution. The different characteristics of the layers make it suitable to
model a network in a simulation framework that explicitly support dif-
ferent models of computation and their interaction. The interaction
with the physical world requires continues time and event while ses-
sion establishment is better expressed using finite state machines. The
different levels could easily be refined and extended through different
phases of the network modeling. While a simple network model only
models random delays a more complex model takes packet collisions,
error coding, bit errors, packet loss, and retransmissions into account.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II is an excellent platform for
modeling network communications.

×Phase II understandingØ

Our understanding: One would have to develop a library of communi-
cations network simulation models, together with models of plant and

Model Analysis

12 of 29 Mobies Position Paper (DRAFT 2 Version)

controller design within Ptolemy. This daunting task cannot be under-
taken by the OEP group. One alternative is to use existing simulation
packages such as ns and Opnet. However, this poses the problem of inte-
grating these packages with, say, Simulink or Teja that describe the plant
and controller. (See challenge problem 4, below). Another approach is
to build an adequate model within Simulink or Teja.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• A framework that can simultaneously model communication networks
(as in Opnet) and contollers and plants (as in Simulink), each using a
modeling strategy suited to the problem being modeled. What we are
delivering is ability to hierarchically compose distinct modeling strate-
gies, not the libraries of modeling components that are needed to con-
struct nontrivial network models. Schedule: done. This is part of
Ptolemy II v. 1.0.

• A framework that supports customization of the modeling semantics
to match the realities of the communication network being used. For
example, if a communication network with unreliable delivery is
being used, then one might wish to construct a model of application by
connecting components with unreliable communication links. Sched-
ule: done. This is part of Ptolemy II v. 1.0.

• Particular modeling semantics that tolerate communication latencies
in communication systems by defining communication to be delayed.
Giotto is one first example of such a modeling semantics. We are
working on at least one other one that does not require the periodic
structure of Giotto. Schedule: started. Expect first versions released
in mid 2002. Elaborations in 2003.

C. Model Analysis

×General ResponseØ

Challenge problems in this section advocate the use of formal models in
designing, implementing, and testing embedded control systems, in par-
ticular, embedded software. Formal models and methods have long been
used in control algorithm designs. For example, the formalism of linear/
nonlinear systems, stability, controllability, observability, and robust-
ness, are all based on solid mathematical foundations. However, tradi-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 13 of 29

tionally, the design and implementation of embedded software is still full
of ad hoc tricks and fragile twists. Theories, methodologies, and tools
that help formalize embedded software models, analyze their properties,
and simulate their real-world behaviors, are under high demand.

Many models exist in embedded software communities. However, some
models are so coarse-grained, like publish and subscribe, that they should
better be used as coordination models among processes and platforms.
Some models are so fine-grained, like the original finite state machines,
that using them to design complex systems becomes tedious and burden-
some. Finding the right (patterns of) models of computation is a critical
part of the Ptolemy project.

C.1 Automatic test generation

×Problem StatementØ

The problem of automatic test generation is, given the model of a system
(in some formalism, e.g., hybrid automata, Simulink blocks), and a speci-
fication of the test goal, to generate a set of test cases that check whether
the system meets the test goal.

The test cases are essentially automata that act as observers/controllers
to the system: they generate inputs to the system, and observe the outputs
of the system, for some finite time. At the end or before this time interval,
they make a verdict, whether the system has passed or failed the test.

Automatic test generation can be viewed as "intelligent" simulation. The
objective is to generate enough test cases (but also a reasonable number
of them) that covers a representative enough class of behaviors, among
all possible environment behaviors.

×ResponseØ

We see testing at two levels -- the atomic level and the composite level.
Almost all component-based design methodologies and tools, including
Simulink, build complex systems using composition of atomic compo-
nents. These atomic components may be provided by tool vendors or
written by application designers. Testing of atomic components requests
a certain amount of knowledge on how the component is written. Some
tools place few constraints on how to write a component, which makes
automated testing very difficult. On the other extreme, some tools restrict
the model of building atomic component to obtain high testability. For

Model Analysis

14 of 29 Mobies Position Paper (DRAFT 2 Version)

example, in Polis [POLIS], components are written in a synchronous lan-
guage, Esterel, and then compiled into codesign finite state machines
(CFSM), which eases the testing and synthesis processes. However,
restricted atomic component models sometimes bring less expressiveness
and awkwardness on writing control algorithms. A study is undergoing
on how to formalize models for Ptolemy II atomic actors. The models
should both be intuitive to application designers, and expose enough for-
mal properties for testing and analysis.

When atomic components are composed to form larger systems, the
interaction styles among them become a critical part of the behavior of
the system. Having formal models for component interaction also helps
testing and analyzing the system. For example, if a piece of embedded
software is built using Boolean Dataflow [BDF], then it may sometimes
be possible to generate a sequence of inputs to test that all components in
the system have been executed.

In terms of software infrastructure support, utility functions can be easily
added to the existing Ptolemy II framework to generate reports on the test
coverage at both atomic component level and component interaction
level. The creation of testbenches, i.e. models that test other models, can
also be easily supported.

[POLIS] F. Balarin, et. al., Hardware-Software Co-Design of Embedded
Systems, the POLIS Approach, Kluwer Academic Publisher, 1997.

[BDF] Joe T. Buck and Edward A. Lee, The Token Flow Model, in
Advanced Topics in Dataflow Computing and Multi-threading, ed.
Lubomir Bic, Guang, Gao, and Jean-Luc Gaudiot, IEEE Computer Soci-
ety Press, 1993

×Phase II summary of this responseØ

Phase I response: Edward Lee. Utility functions can be added to exist-
ing Ptolemy II to generate reports on test coverage at individual compo-
nent and component interaction levels. Creation of testbenches, i.e.
models that test other models, can also be supported.

×Phase II understandingØ

Our understanding: Running simulation models of the design against
typical plant behaviors tests Level 1 and level 2 control designs. In the
PC design, one simulates typical loads, temperature, etc. to evaluate
powertrain performance. In the CCAV+CW design, one simulates "typi-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 15 of 29

cal" scenarios of inter-vehicle distance and speed, etc. The design team
selects the test scenarios.

Testing of code poses more difficult challenges that we haven't resolved.

×Our phase I planØ

We now interpret this challenge problem more broadly to be concerned
with assurance. Debugging and testing methods are part of the solutions
rather than part of the problem. Consider for example a component that
needs new input on all ports in order to react. A proper design ensures
that new input is available on all ports before a reaction is stimulated.
There are three approaches to ensuring that a design is “proper”:

• a testing approach,
• an assertions approach, or
• a static analysis approach.

A testing approach checks everything at run time by testing for particular
violations. An assertions approach statically declares, as part of the
design, the parameters of correct behavior, and verifies at run time that
these parameters are met. A static analysis approach is most familiar
today in the form of a type system. Components declare their parameters
of correctness as part of their interface definition, and a design time tool,
such as a compiler, checks that these parameters are met. Formal verifi-
cation techniques fall in this category as well, but our approach is much
more like type systems than like model checking or theorem proving.

As part of our phase 1 effort we will deliver:

• A mechanism for defining dynamic properties of interfaces (such as
that new inputs are required on all ports to react). Schedule: first ver-
sion done using FSMs and reported in http://ptolemy.eecs.berke-
ley.edu/publications/papers/00/systemLevel/. A second version
interface automata (by Luca de Alfaro) has also been done, but
not yet reported.

• A mechanism for composing interface definitions to perform “type
check” statically. Schedule: started. First version expected by mid
2002. A complete theory and software support is expected by end
2003, perhaps.

Model Analysis

16 of 29 Mobies Position Paper (DRAFT 2 Version)

C.2 Verification

×Problem StatementØ

The problem is to verify that a given model in a formalism such as the
above satisfies a given specification, for example, "an unsafe state is
never reached", "the controller is never deadlocked", a variable used by
the controller has been defined, and so on.

In the CACC+CW application, the main property to be verified is that
collision between vehicles is avoided, that is, the distance between the
subject vehicle and the vehicle in front is never zero.

In the PC application the unsafe or undesirable states might be specified
by bounds on engine speed, fuel-air ratio, stability of idle speed, etc.

×ResponseØ

There are two related issues here -- correct by construction and verifica-
tion. Many system design methodologies advocate correct by construc-
tion, that is, certain properties hold as long as the design staying within a
framework. Pole placement in linear systems is an example of such a
framework that ensures stability. In embedded software design, there are
similar methodologies. For example, in synchronous dataflow models,
deadlock-free is a property that can be statically analyzed. If we have a
correct-by-construction framework, then verification is not an issue.

Certain properties for embedded systems may be hard to provide by cor-
rect-by-construction frameworks. In these cases, we also would like that
the embedded software be built in formal models such that formal verifi-
cation techniques, like reachability analysis and model checking, can be
applied. Tom Henzinger’s group, part of our Mobies effort at UC Berke-
ley, is working to integrate verifiable models, like Giotto, with system
design frameworks, like Ptolemy II.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Tom Henzinger's group is working to
integrate verifiable models, like Giotto, with Ptolemy II.

×Phase II understandingØ

Our understanding: Existing tools for verification of hybrid systems
place strong restrictions on the system dynamics, which preclude their

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 17 of 29

use for the automotive OEP. So one must resort to approximations. The
use of FSM model-checking tools requires even further approximations.
It would be valuable to see how the CMU and U. Penn tools work on the
(non-hybrid) example in Puri and Varaiya.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Generators that produce code that is “correct by construction” in that it
matches the (narrow) semantics of a well-understood model that does
not therefore require elaborate verification. Giotto and synchronous
dataflow, for example, are modeling frameworks with sufficiently nar-
row semantics that strong properties can be asserted about any correct-
by-construction implementation. Schedule: started. First versions of
code generators from Giotto and SDF are expected by mid 2002.
Inclusion of FSM and RTOS is expected in 2003. Note that this is
the same code generator promised above in B.1.2, Multiple-View
Models.

Note: One view of the restriction on system dynamics is that it “precludes
use for the automotive OEP” and one must resort to approximation.
Another view is that requires abstraction. We prefer the second view.

C.3 Synthesis of switching (hybrid) controllers

×Problem StatementØ

The problem here is, given a set of macro-states (system modes), for each
of which a control law is defined, and a set of switching conditions
between these states, to synthesize a global controller which operates in
any of these states and switches between them according to the condi-
tions. The objectives are that the controller is stable, transitions are
"smooth", and so on.

The synthesis might involve restricting the conditions, adding resets (re-
initialize some variables), or synthesizing a transient set of states
through which the controller passes during the switch.

×ResponseØ

This work has been performed in the SEC project at Berkeley.

Model Analysis

18 of 29 Mobies Position Paper (DRAFT 2 Version)

In many control applications, a specific set of controllers of satisfactory
performance have already been designed and must be used. When such a
collection of control modes is available, an important problem is to be
able to accomplish a variety of high level tasks by appropriately switch-
ing between the low-level control modes. In [KPS], a framework for
determining the sequence of control modes satisfying reachability tasks
is proposed. The approach consists of extracting a finite graph which
refines the original collections of control modes, but is consistent with
the physical system, in the sense that high level design has feasible
implementation. Therefore, the control mode graph can then be used on-
line for efficient and dependable real-time mode switching. For deter-
mining the switching conditions between different modes, there exists
synthesis algorithm [ABDMP] for linear controlled systems. As shown in
[KPS], if the closed loop dynamics are considered, the switching condi-
tions between control modes can be computed efficiently by just examin-
ing the stability properties in the control modes. The framework
presented in [KPS] is illustrated on a nonlinear helicopter control system
with four control modes.

[KPS] T. J. Koo, G. J. Pappas, and S. Sastry, “Mode Switching Synthesis
for Reachability Specifications,” Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science, Springer, 2001.

[ABDMP] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli,
“Effective Synthesis of Switching Controllers for Linear Systems,” In
Proceedings of the IEEE, 88, Special Issue on Hybrid System: Theory &
Applications, 1011-1025, 2000.

C.4 Performance

×Problem StatementØ

The problem is to study robustness to parameter changes (sensitivity),
fault tolerance, etc. Controller designs typically incorporate strategies
for detection and reaction to faults.

×ResponseØ

We acknowledge the studies on networked control systems, real-time
performance of embedded controllers, and fault detection and isolation
(FDI). We are not expecting to contribute on the theoretical aspects of
these studies. However, we believe that modeling and simulation envi-
ronments that allows people who work on such theories to quickly proto-

Model Analysis

Mobies Position Paper (DRAFT 2 Version) 19 of 29

type their concepts is equally important. As stated in section B.1,
Ptolemy II is able to integrate models for real-time scheduling, network
protocols, controllers, FDI algorithms, and plant dynamics, and allow
designers to gradually increment design considerations.

×Phase II summary of this responseØ

Phase I response: Edward Lee. The Ptolemy II simulation environment
can be used to quickly prototype concepts of fault detection and isolation,
and to integrate those models with those of the rest of the plant and con-
trollers.

×Phase II understandingØ

Our understanding: There are two steps in how control designs address
fault tolerance. The first step involves fault detection. One assumes a set
of models that describe the system under various fault conditions. The
set includes the no-fault model. A separate controller is built for each
fault condition. Based on sensor measurements, an on-line statistical
procedure infers when a fault occurs and what type it is, and a "supervi-
sor" switches in the controller built to handle that fault. There is a vari-
ety of inference procedures and redundant architectures to make robust
the inference and fault-handling controllers.

×Our phase I planØ

As part of our phase 1 effort we will deliver one or more techniques for
constructing modal models. We will not specifically address the FDI
problem, but we believe that this modal modeling infrastructure can be
used to explore the problem.

• A finite-state machine domain that can be composed hierarchically
with other domains to achieve modal models. Schedule: done. This is
part of Ptolemy II v. 1.0.

• An improved visual syntax for constructing modal models hierarchi-
cally. Schedule: started. First version expected in mid 2002.

• A generalized masking scheme where models that are assemblies of
components have associated with them a state machine, where each
state of the state machine “masks” the components that are active.
Schedule: We have constructed a first prototype as part of the
SEC project, and may be pursuing this under that project.

Implementation

20 of 29 Mobies Position Paper (DRAFT 2 Version)

D. Implementation

D.1 Test vector generation

×Problem StatementØ

They can be simulated and analyzed using a given tool: one challenge
here is to compare the semantics and expressiveness of the different for-
malisms, and indicate which is more suitable for which typical control
applications.

×Not responded yetØ

D.2 Schedulability analysis

×Problem StatementØ

Most systems consist of a number of logical tasks, where each task is
characterized by a set of activation conditions, execution time, resources
that it has to access, and completion deadline. Upon implementation,
these logical tasks are mapped onto one or more processes running on a
single host machine, therefore sharing the CPU and other resources. The
problem of schedulability analysis consists in determining which policy
to use for scheduling the physical tasks so that the deadlines of the logi-
cal tasks are met (plus other properties such as absence of deadlocks,
process starvation, and so on). Alternatively, given a scheduling policy,
to determine whether these conditions are met. Notice that we distinguish
between logical and physical tasks (processes), since in general, more
than one logical tasks can be implemented in the same process, where
they are scheduled internally (e.g., Teja generates code like that). Even
in this case, it is the requirements of the logical tasks that have to be met.

A particular challenge problem is to carry out in an automated way a
schedulability analysis similar to the one described in the document
below, for the publish/subscribe database architecture used at PATH.
Part of the challenge problem is to come up with automated ways to esti-
mate the various execution times necessary in the analysis. Even better
would be a synthesis procedure that proposes how priorities are to be
assigned to the different processes.

×ResponseØ

Implementation

Mobies Position Paper (DRAFT 2 Version) 21 of 29

Processes, and their cousin, threads, are widely used for concurrent soft-
ware design. Indeed, processes can be viewed as a component technol-
ogy, where a multitasking operating system or multithreaded execution
engine provides the framework that coordinates the components. Compo-
nent interaction mechanisms, monitors, semaphores, and remote proce-
dure calls, are supported by the framework. In this context, a process can
be viewed as a component that exposes at its interface an ordered
sequence of external interactions. However, as a component technology,
processes and threads are extremely weak. A composition of two pro-
cesses is not a process (it no longer exposes at its interface an ordered
sequence of external interactions). Worse, a composition of two pro-
cesses is not a component of any sort that we can easily characterize. It is
for this reason that concurrent programs built from processes or threads
are so hard to get right. It is very difficult to talk about the properties of
the aggregate because we have no ontology for the aggregate.

A key problem in scheduling is that most methods are not compositional.
That is, even if assurances can be provided individually to a pair of com-
ponents, there are no systematic mechanisms for providing assurances to
two, except in trivial cases. A chronic problem with priority-based sched-
uling, known as priority inversion, is one manifestation of this problem.

×Phase II summary of this responseØ

Phase I response: Edward Lee. A key problem in scheduling is that most
methods are not compositional. Processes (and threads) consume
shared resources in a complicated manner. So if process A and B can be
accommodated separately, there is no easy way to ensure that A and B
together can be accommodated. A TDM scheduler like Giotto and TTA
simplifies schedulability since it divides CPU resources into time slots
and assigns a time slot to each periodic task.

×Phase II understandingØ

Our understanding: Traditional schedulability analysis like RMA is lim-
ited. Some limitations are overcome by extensions, eg., Harbour, Lehoc-
zky, and Klein: "Analysis of tasks with varying fixed priorities," Prof.
12th IEEE Real-time Systems Symposioum, 1991. The above-cited docu-
ment by Tripakis does this. Yet another approach based on Esterel and
Kronos is presented in the document by Tripakis and Yovine. Going to a
TDM system certainly simplifies schedulability analysis. However, there
may be a large cost: the underlying hardware and OS must support
TDM; the fixed TDM schedule reduces flexibility; TDM schedules may

Implementation

22 of 29 Mobies Position Paper (DRAFT 2 Version)

not work for event-driven systems as in the PC problem where camshaft-
driven events are very important.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Modeling semantics such as Giotto where schedulability analysis is
greatly simplified by disciplining the inter-component interactions
(data dependencies and synchronization). This will include modeling
semantics that are applicable to other sorts of problems than Giotto,
such as event-based problems. Schedule: This is pretty open ended
work, hard to pin down to a schedule. Under the SEC project, we
have developed an RTOS domain in Ptolemy II that has semantics
somewhere between Giotto and a conventional RTOS. We are
studying this to see how to adapt it to the automotive OEP sce-
nario.

D.3 Code Generation

×Problem StatementØ

The problem here is to automatically generate code for a given platform,
starting from a model (e.g., hybrid automata, dataflow blocks), such that
the generated code preserves the properties of the model, potentially
under a number of assumptions on the underlying platform.

Code generation can occur at various granularities: generating code for
pieces of the entire model (e.g., Simulink blocks) up to generating code
for the entire model (e.g., Teja). In the first case, support is necessary for
"gluing" the pieces together (e.g., scheduling). In the latter case, sup-
ports necessary for performing schedulability analysis (c.f. problem 3.2).
In case this analysis shows that some deadlines are missed, it is likely
that this is due to the granularity of some atomic actions, which is too
coarse (i.e., preemption of these actions is necessary). The tool should be
able to figure this out and guide the user into splitting the actions in
question into more fine-grain pieces.

×ResponseØ

The feasibility and quality of code generation heavily depends on the
models that are used to create high-level designs. For example, to gener-
ate code that implements a discrete-event model of computation, an event
queue and sorting algorithms have to be generated; to generate code that

Implementation

Mobies Position Paper (DRAFT 2 Version) 23 of 29

implements a discrete-time models, a time-triggered execution engine
need to be generated; to generate prioritized preemptive models, priori-
tized process queues and preemption mechanism need to be generated,
and so on. Mixing and matching right models of computation not only
make complex designs more understandable, but also helps optimize
generated code.

In Ptolemy II, code can be generated at two levels -- shallow and deep.
Code generated by shallow code generation will rely on Ptolemy II pack-
ages to execute. The generated code still use Ptolemy actor libraries,
actor composition, and directors. Although the implementation language
is still Java, the code generation process can create an independent Java
application and package only necessary Ptolemy II classes with it.

Deep code generation looks into individual actors, and creates abstract
syntax trees (AST) for them. Together with knowledge provided by the
type system and models of computation, it can generate (in principle)
highly efficient codes that targets specific designs. Since the AST is
implementation independent, the backend language can easily be C/C++.
This work is still highly preliminary, but we are optimistic that it will
yield a far better approach to code generation than any of the commonly
used alternatives.

We are also looking at platform dependent run-time support for Ptolemy
designs. See further discussion in section D.5.

×Phase II summary of this responseØ

Phase I response: Edward Lee. Ptolemy II can generate code at shallow
and deep levels. Shallow code in Java uses Ptolemy libraries to execute
a simulation. Deep code that targets specific designs (platforms like
OSEK+MPC55?) can in principle be generated.

×Phase II understandingØ

Our understanding: Executable simulation (shallow) code seems like
the code generated by, say, Simulink or Shift. Teja generates code for the
publish and subscribe architecture and a forthcoming Teja compiler for
OSEK will generate code for the MPC555 platform.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

Implementation

24 of 29 Mobies Position Paper (DRAFT 2 Version)

• A framework for building code generators from several models of
computation, and example code generators at least for Giotto, SDF,
and FSM. Schedule: first versions in mid 2002. More complete ver-
sions in 2003.

D.4 Code debugging and testing

×Problem StatementØ

Code debugging and testing refers to: first, being able to run and debug
the code with or without hardware in the loop; second, being able to map
the results to the model from which the code has been generated (if this is
the case). For example, if an error occurs during the execution of the
code, say a variable X grows above an acceptable limit, one should be
able to check whether the same behavior can be reproduced in the model.
If this is so, then the model is incorrect. Otherwise, either some of the
assumptions of the underlying platform has been violated (e.g., not
enough CPU), or the code generator is incorrect.

A useful method for code debugging and is the annotation of the code
with "self-examining" parts, for example, assertions about the timing,
values of variables, and so on. This is often done manually, and a chal-
lenge is to generate such annotations automatically and provide support
for the interpretation of the results.

×Not responded yet.Ø

D.5 RTOS generation

×Problem StatementØ

Ford's definition of the challenge problem is as follows: given a target
software and hardware architecture, the worst-case execution time for
the embedded system code, and additional timing constraints, generate a
custom RTOS that enables the target code to meet all the timing require-
ments and is the most efficient in ROM, RAM, and CPU usage.

We think that automatic generation of OSEK OIL files for Matlab/Sim-
ulink generated code can also be considered under this topic, as the lat-
est version of Matlab can not generate OIL files for OSEK applications.
OSEK Implementation Language (OIL) aims to create an OSEK compli-

Implementation

Mobies Position Paper (DRAFT 2 Version) 25 of 29

ant RTOS scaled to a specific application. For all OSEK applications
OIL must be used to statically configure the application at compile time.
OIL is used to select the scheduling policy, define the objects (like tasks,
alarms, events, resources, counters, ISRs...etc) in an application and
their attributes.

×ResponseØ

We share the vision with Ford that embedded systems sometimes need
application specific run-time environment, e.g. RTOS, to achieve high
execution efficiency and low foot-print. We have studied run-time mod-
els for control-centric embedded systems and proposed a hierarchical
composition of run-time models based on Ptolemy component architec-
ture and models of computation [LJL]. Existing RTOSs usually only pro-
vide a flat layer of abstraction and one model of computation --
prioritized preemptive scheduling. All applications have to map to such a
run-time model, regardless whether the model matches the application.
One purpose of our hierarchical run-time models is to allow designers to
use execution models that fit the application best and to deploy only the
necessary run-time support packages.

In particular, we propose to solve the problem from two ends. From the
design side, embedded system designers should be able to explore differ-
ent models of computations to match the application. This will typically
ends up with hierarchically composing heterogeneous models of compu-
tation. And from the implementation side, a run-time environment can be
developed that support hierarchical composition of run-time models.
Such a run-time environment will be platform dependent and highly
(re)configurable. The run-time environment will also reduce the code
generation complexity, since the implementation architectures match the
modeling and design architectures.

[LJL] Jie Liu, Stan Jefferson, and Edward A. Lee, “Motivating Hierarchi-
cal Run-Time Models for Measurement and Control Systems,” to appear
in 2001 American Control Conference (ACC’01), Arlington, VA, June
2001.

Implementation

26 of 29 Mobies Position Paper (DRAFT 2 Version)

×Phase II summary of this responseØ

Phase I response: Edward Lee. Addressing this problem within the
Ptolemy framework is on the agenda.

×Our phase I planØ

As part of our phase 1 effort we will deliver:

• Code generation for Giotto and possibly our RTOS domain. Sched-
ule: In 2003.

D.6 System Partition

×Problem StatementØ

Implementation is relative to a given platform, which includes hardware
components such as computers/micro-controllers, sensors, actuators,
communication devices and links, and software such as operating sys-
tems, device drivers, libraries, or middleware (e.g., Corba, Jini, Publish/
Subscribe). Often the choice of the underlying platform has been fixed by
other factors, but it may be the case that a number or alternatives are
possible.

One challenge problem is therefore to provide methods for choosing a
platform, given a description of the particular application or class of
applications that the platform has to support. The description might be
the detailed model of the application, or some general characteristics
such as sampling frequencies, desired throughput, and so on.

Assuming the platform and application are fixed, and the platform is dis-
tributed, a challenge is to support the user in deciding how to partition
the different functions or tasks of the application to the different comput-
ers, micro-controllers, etc. Such feedback may be input to the code-gen-
eration tools, which will generate code for the different parts, as well as
for interfacing these parts (e.g., through a network).

Integration

Mobies Position Paper (DRAFT 2 Version) 27 of 29

×Not responded yet.Ø

E. Integration

This is one challenge problem that has multiple aspects. It has to do with
merging of different control applications (e.g the PC and CACC+CW
applications):

- at the modeling, simulation and analysis level,
- at the implementation level.

The controllers for PC and CACC+CW are complementary in the sense
that CACC+CW produces a desired acceleration/deceleration output,
while PC receives acceleration as input and produces torque as output.

During the first stages of the project, models and implementations of
these two applications will be developed using different formalisms and
tools, and on different platforms.

The integration challenge is to develop methods and tools in order to be
able to perform one or more of the following functions:

E.1 Model translation

×Problem StatementØ

They can be simulated and analyzed using a given tool: one challenge
here is to compare the semantics and expressiveness of the different for-
malisms, and indicate which is more suitable for which typical control
applications.

E.2 Integration of models and computation

This includes studying different underlying models of computation of
each tool, and resolving whether the underlying assumptions are com-
patible, and what fixes are needed for meaningful model comparison/
integration.

×ResponseØ

Integration

28 of 29 Mobies Position Paper (DRAFT 2 Version)

We do not quite understand what exactly the problem statement is. The
Ptolemy project is all about integration of models of computation.

E.3 Tool Integration

×Problem StatementØ

Integrate tools (e.g., Simulink and Teja) so that they can simulate in con-
junction two sets of interacting models. The challenge here is to preserve
real-time properties during the execution of the two tools in parallel.

×ResponseØ

One fundamental issue about (interactive) tool integration is the seman-
tics integration. Tools are designed based on one or more models of com-
putation. For tool integration, we have to understand the MoC and study
the interaction among them. In most cases, this may require the tools to
expose more information than it usually does.

For example, if we want to do mixed-signal simulation by integrating
discrete-event simulators with continuous-time simulators, then we
require that the discrete event simulator to expose its “next event time” in
addition to its current time. Obviously, not all discrete event simulators
support that. In an early study [LWLL], we claimed that tools are likely
to be able to communicate with other tools with the same semantics.
Based on the fact that Ptolemy II support multiple MoC, we can use
Ptolemy II as a glue to integrate tools.

It is also helpful to look at tool integration from dataflow and control
flow perspectives. At an abstract level, execution in a design tool can be
view as data flow objects. They read inputs, do a finite computation, and
produce outputs. Individual tools also apply specific control flows to its
internal execution. They typically control how the messages are deliv-
ered from one component to another, what is the execution order among
components, and what is an atomic piece of execution. The concepts of
composite actor and hierarchy in Ptolemy II provide a polymorphic way
of encapsulating control flow. Composite actors wrap their internal com-
ponents execution in such a way that they behaves like atomic actors.
Similarly, if we can wrap tools in such a way that they behave like
(domain-polymorphic) dataflow components, then the integration of
tools could be lot easier. Of course, this is not always the case. Some-
times, control flow information must be exposed to the outside.

Integration

Mobies Position Paper (DRAFT 2 Version) 29 of 29

[LWLL] Jie Liu, Bicheng Wu, Xiaojun Liu, and Edward A. Lee, “Inter-
operation of Heterogeneous CAD Tools in Ptolemy II,” in symposium on
Design, Test, and Microfabrication of MEMS/MOEMs, March 1999,
Paris, France

E.4 Software/hardware integration

×Problem StatementØ

One challenge here is to build interfaces through which the two imple-
mentations will communicate, or alternatively, re-generate the imple-
mentations, given that they will run in parallel.

×Not responded yet.Ø

